
“Good” and “Bad” Problems and Algorithms

This course devotes significant effort to addressing the question of what constitutes
a “good” problem in linear algebra, as opposed to what constitutes a “bad” one, and
similarly for the algorithms that we might use to solve those problems. Unfortunately,
these are somewhat “fuzzy” questions, and we will certainly not be able to either cleanly
or fully answer them here. Moreover, this discussion can be even further clouded by the
fact “goodness” or “badness” may vary with what specific aspect of a given problem or
algorithm we are discussing. For example, some algorithms are very may “good” from the
viewpoint of numerical accuracy, but rather “bad” in terms of efficiency.

At this point in the discussion, we shall address this question only from the viewpoint
of numerical accuracy, and we shall consider:

A problem “good” when small changes in the “data” of that problem do
not significantly change the solution. Conversely, small changes in the data of a
“bad” problem may significantly alter the solution.

An algorithm “good” when that algorithm is virtually certain to produce
accurate solutions for all “good” problems. Conversely, a numerically “bad”
algorithm carries significant risks of producing highly inaccurate solutions in the
case of at least some good problems.

(Note we should properly call the above statements concepts, since they’re really not
precise enough to merit the term definition.)

The major insight that we hope you will take away from this section is that while a
“bad” algorithm can lead to highly inaccurate solutions to what should have been a simple
problem, there is likely no algorithm that will adequately solve a problem that is simply
bad to begin with.

We shall illustrate these concepts further with some examples. First, consider the
system of linear equations:

.0001x1 + x2 = 1
x1 + x2 = 2 (1)

The solution of this system is geometrically identical to the point of intersection of the two
lines shown in Figure 1. Moreover, it seems graphically obvious that slightly moving or
rotating either (or both) of the lines will not substantially move the point of intersection.
Therefore, we claim that, almost intuitively, this should be a “good” system!

1



Figure 1

Moreover, numerical experimentation tends to confirm this conclusion, i.e. randomly
changing the coefficients in this system by “small” amounts can also be shown not to
significantly move the solution. For example, Figure 2 shows how little the true solution
moves if we change the system to:

0.0001 x1 + 1.0075 x2 = 1.0292
1.0087 x1 + 0.9932 x2 = 1.9476 (2)

(Note that all of the coefficeints in (2) vary from those in (1) by less that one percent.)

Figure 2

2



Nevertheless, while we can conclude that (1) should be a good problem, the geometry
also plainly indicates that not all algorithms may produce an accurate solution to it.
Specifically, we could theoretically use either of the two equations in (1) to solve for one
variable in terms of the other. However, the practical truth is very different. Specifically,
we can easily show that using the second equation:

x1 + x2 = 2

to solve for either unknown in terms of the other should produce no real problem. This is
because, for example, if we rewrite that equation as

x1 = 2 − x2

then
dx1

dx2
= −1 Therefore, according to the concept of differentials from the elementary

calculus, small changes in the numerical value of x2 will be produce correspondingly small
changes in the value of x1 as well. A similar result occurs if, on the other hand, we rewrite
that second equation as:

x2 = 2 − x1

On the other hand, if we rewrite the first equation as

x2 = 1 − .0001x1

then
dx2

dx1
= −.0001 and so small changes in the numerical value of x1 will produce

miniscule corresponding changes in x2. However, if were instead rewrite the first equation
in (1) as

x1 = 104 − 104x2

then
dx1

dx2
= −104! Phrased slightly differently, for the second equation, small changes in

the numerical value of x2 result in very large changes in x1 (an observation that should, in
hindsight, be geometrically obvious in Figure 1). Therefore, it would seem clear that any
algorithm that is equivalent to using the first equation to solve for x1 in terms of x2 will
very likely be “bad.”

Now, contrast the previous example with the system

1.01 x1 +0.99 x2 = 2
0.99 x1 +1.01 x2 = 2 (3)

The solution to this system is equivalent to the point of intersection of the lines shown in
Figure 3. However, as this figure fairly clearly displays, these two lines are almost parallel,
and therefore, also fairly clearly from a geometric perspective, any small change in either
the slope or intercept of either could significantly move the intersection.

3



Figure 3

The effect of small changes in the data for this system can also be tested numerically.
Figure 4 shows how the solution moves when we replace the original system with:

1.0036 x1 + 0.9947 x2 = 1.9946
0.9978 x1 + 1.0137 x2 = 1.9906 (4)

Note this is a sizable shift, even though (4) reflects, relatively, no larger change to (3)
than we made in going from (1) to (2)). This would seem to confirm our intuitive feeling
that (3) is an inherently “bad” problem.

Figure 4

4


